
Pineapple Game Engine

Adam Yaxley
Third Year Computing Systems (MEng)

University Of Warwick

Supervisor: Dr Nathan Griffiths

26th April 2012

Abstract

This project explores a solution that removes the bottleneck that is present in scripting language
based game engines. Using a compiled language for game logic instead of an interpreted lan-
guage has major advantages, such as a huge performance increase, and removing the possibility
of decompilation. Two case studies of current scripting language based game engines are ana-
lysed and a platform agnostic game engine is developed in C++ that features the same power
and simplicity that scripting languages are popular for.

Keywords: Game Engine, Computer Systems, Computer Graphics, Cross-Platform, Low-Level Routines.

Contents

1 Introduction 5

1.1 Dissertation Outline . 5

1.2 Acknowledgements . 5

1.3 Motivation . 6

1.4 Aims and Goals . 6

1.5 Legal, Social, Ethical and Professional Issues . 7

2 Related Work 8

2.1 Simple Directmedia Layer . 8

2.2 Allegro . 8

2.3 Discussion . 8

3 Analysis 10

3.1 Scripting Languages in Game Engines . 10

3.1.1 Introduction . 10

3.1.2 List of Advantages . 11

3.1.3 List of Disadvantages . 11

3.2 Case Studies . 12

3.2.1 Case Study I: GameMaker . 12

3.2.2 Case Study II: Unreal Engine . 14

3.2.3 Conclusion . 16

3.3 Requirements . 16

1

4 Design 18

4.1 Core Design Goals . 18

4.2 Engine Architecture . 18

4.2.1 Game Objects . 18

4.2.2 World . 20

4.2.3 Plug-Ins . 21

4.3 System Structure . 23

4.3.1 Start Phase . 23

4.3.2 Processing Phase . 24

4.3.3 End Phase . 24

4.4 Platform Agnosticism . 24

4.4.1 Platform Specific Phases . 25

4.4.2 Requirements . 25

5 Development 26

5.1 Compiled Language Justification . 26

5.2 Target Platforms . 27

5.2.1 Considerations . 27

5.2.2 Microsoft Windows . 28

5.2.3 Linux . 28

5.2.4 Nintendo DS . 29

5.3 Implementation . 29

5.3.1 Pineapple Object Interaction Framework 29

5.3.2 Plug-Ins . 38

5.4 Putting it all Together . 40

6 Project Management 42

6.1 Software Development . 42

6.1.1 Software Development Model . 42

6.1.2 Software Engineering Principles . 42

6.1.3 Source Code Management . 43

2

6.2 Verification . 43

6.2.1 Requirements Analysis . 43

6.2.2 Verification of Design . 43

6.3 Validation . 44

6.3.1 Unit Testing . 44

6.3.2 Integration Testing . 44

6.3.3 Platform Testing . 45

6.3.4 System Testing . 45

6.4 Criticisms of Project Management . 45

7 Technical Challenges 46

7.1 Pineapple Object Interaction Framework . 46

7.1.1 Automation: Exploiting Implicit Template Instantiation 46

7.2 Nintendo DS . 47

7.2.1 Hardware Specification . 47

7.2.2 Graphics Capabilities . 48

7.2.3 Organising Video Memory . 49

7.2.4 Sprite Engine . 52

7.2.5 Map Engine . 54

8 Conclusion 59

8.1 Demonstration . 59

8.2 Discussion . 60

8.3 Relevance to Computer Science . 61

8.4 Summary of Contributions . 61

8.5 Further Work . 61

Bibliography 63

A UML Diagram 65

B External Module Design 66

C AABB Collision Algorithm 67

3

D Nintendo DS Video Modes 68

E Nintendo DS Map Engine 69

F Demonstration Screenshots 70

4

Chapter 1

Introduction

This chapter provides a general introduction to the dissertation, and what the project is about.

1.1 Dissertation Outline

This dissertation will analyse the problems associated with scripting languages in games engines
in depth and will propose a new solution that offers the same simplicity and power that is
offered by current scripting languages but with a faster performance from the use of a compiled
language. The design and development of the solution, as well as the project management
techniques involved will also be detailed.

1.2 Acknowledgements

First and foremost, I offer my sincerest gratitude to my supervisor, Dr Nathan Griffiths, who
has supported me throughout the entire project. His patience and knowledge has helped me to
push my project in the right directions.

I would like thank all of the brilliant minds on stackoverflow1 for their detailed discussions on
popular computer science problems, which have given me a sense of standards, efficient algorithm
design, and enlightened me with other popular techniques that have made the implementation
side of this project possible.

I owe my deepest gratitude to all of the contributors to the unofficial Nintendo DS software
development kit, to name a few: Michael Noland, Jason Rogers, and Dave Murphy. For their
continued support and dedication to the tools that made it possible to create the Nintendo DS
version of this project. I would also sincerely like to thank Jasper Vijn and Mukunda Johnson
for their excellent tools for respectively compiling graphics and sound files into Nintendo DS

1An on-line question and answer community discussion.

5

ROM’s2. I am also grateful for the on-line reference material and tutorials for the Nintendo
DS provided by Jaeden Amero and Liran Nuna that made it possible to overcome the fear I
had for Nintendo DS development. None of the actual testing for the Nintendo DS would have
been possible without the work of Martin Korth and his Nintendo DS emulator3, to whom I am
greatly appreciative.

I am greatly indebted to Clinton Alexander for his daily support and helpful Linux knowledge.
Also to my dedicated team of quality assurance testers for their patience and brilliant ideas:
Jason Buwanabala, Daniel Law, Jenny Xiang, Aidan Yardy, and Josh Yaxley.

To all the contributors at freesound4 for the sound effects and music that have been used in the
demonstrations, and also to Emily Coad from DeviantArt5 for her amazing pineapple graphic
that has been used as the logo for the Pineapple Game Engine.

Lastly, I would like to thank my parents who have given me there full support throughout all of
my university studies.

1.3 Motivation

The motivation for this project comes from my desire to create my own video games, and also
from my experience with GameMaker6 in the past eight years. GameMaker has gained huge
popularity and a vast user base since its initial release in 1999. The main reason for this is that
GameMaker boasts an incredibly simple user interface. The only disadvantage that this game
engine has was the fact that it uses an interpreted scripting language for much of its game logic.
This was a limiting factor and a significant bottleneck for developers and gamers alike. I was
inspired by the simplicity of GameMaker’s interface, but annoyed at the performance hit from
the use of an interpreted scripting language. This motivated me to design a system that was
extremely simple to use for the developer, and also extremely fast.

1.4 Aims and Goals

The purpose of this project is to develop a native, platform agnostic software system to be used
for building graphical applications including games and simulations. Based on this, the two
main objectives are defined as:

1. Remove the bottleneck that is present in game engines that use an interpreted language
for game logic.

2A complete Nintendo DS executable application.
3A piece of software that acts as a virtual machine and emulates the hardware of another machine.
4Open database of free sound effects in the public domain.
5An Internet based art exchange forum.
6An easy game creation tool developed by Prof Dr Mark H. Overmars, Utrecht University.

6

2. Define a game as an abstract concept, creating a completely platform agnostic solution.

To achieve these two primary objectives the project will be broken down into two main parts.
These two parts will together make up the Pineapple Game Engine, which will feature as a
cross-platform practical solution to the problem. Specifically, these goals are as follows:

• Build the Pineapple Game Engine.

– Create the Pineapple Object Interaction Framework, which will provide the necessary
base components to interface with the application.

∗ Provide a system to create and destroy objects in the current scene.

∗ Have multiple scenes and the ability to switch between them.

– Create the various plug-ins that will demonstrate that the Pineapple Object Interac-
tion Framework is a functional solution to the problem.

∗ Handle input and timers.

∗ Provide support for physics.

∗ Build a graphics engine.

∗ Enable sound playback.

1.5 Legal, Social, Ethical and Professional Issues

One of the target platforms for this project is the Nintendo DS. There is some controversy
in developing homebrew7 software for the Nintendo DS, although there is no law against it.[20]
Explicit permission is required from Nintendo in order for a company to receive official developer
rights and access to the official software development kit, however that is not necessary for the
scope of this project.

The Pineapple Game Engine uses FMOD for its sound system on desktop platforms, which is a
proprietary audio library created by Firelight Technologies. Of the multiple licenses available,
the non-commerical license has been adopted for this project, which allows FMOD to be used
freely in software not intended for commercial distribution.[8]

7Software that has been developed using unofficial development kits.

7

Chapter 2

Related Work

This chapter surveys previous work that has defined a game as an abstract concept, incorporating
the use of platform agnostic systems.

2.1 Simple Directmedia Layer

Simple Directmedia Layer (SDL) is a cross-platform open source game programming library
that is available for a wide range of platforms including Android, Windows, Linux, Mac OS
X and the PlayStation Portable.[27] It features generic low-level functionality for interacting
with graphics, input and sound devices and is mainly used to develop cross-platform computer
games. Due to its platform agnostic nature it can also be used to port games from one platform
to another, and was used to port the popular old school shooting game Doom to BeOS. There
is an unofficial Nintendo DS version of SDL, but it is not listed on their front page, and judging
from the Nintendo DS section of SDL’s souce code, it is still in early development and not very
well supported.[19]

2.2 Allegro

Also an open source cross-platform library, Allegro attempts to generalise the platform by
presenting a hardware abstraction layer to the developer for graphics, sound and input devices.
It is structured in a similar way to SDL, with its functionality split up between separate modules
and currently supports Windows, Mac OS X, MS-DOS, Linux, FreeBSD and BeOS.[12, p.37]

2.3 Discussion

SDL and Allegro both feature a modular based system, where each module has specific im-
plementations available for each platform, and the correct implementation is chosen during

8

compilation. This design pattern is frequently used in many other cross-platform game engines
because it reduces the platform specific work done by the developer, saving a lot of time.

Both support game specific concepts such as timers, graphics, sound, and input. Both feature
2D sprite manipulation, with functionality for scaling and rotation transformations. Support
for tiled background maps is also included in both SDL and Allegro. These two features, sprites
and maps, when used simultaneously are a fundamental component of the graphical architecture
that most 2D games would require, which is why these graphical concepts will also be supported
by the Pineapple Game Engine.

Even though both SDL and Allegro include functionality for such a wide range of game specific
concepts, neither have support for physics. Computational physics is an extremely complex
area of computer science and computer games development. The exclusion of a suitable physics
component forces developers to incorporate physics into their games manually. There exists a
selection of free physics engines such as Box2D1 and the Bullet Physics Library2 that could be
integrated, but this is extra unnecessary effort for the developer. The Pineapple Game Engine
will feature a minimalistic physics engine for use in games to solve this problem.

In SDL, events are gathered from both the user and the platform, which are then subsequently
pushed into an event queue. This event queue can then be traversed by the developer to access
the individual events. Allegro has a similar message loop system, but also offers support for a
variable callback rountine, where the developer will specify a custom function that the events will
be dispatched to, which is one step closer to automaticity.[12, p.175] Both libraries are written
in C, and when used in C++ projects, with object-orientated design methods in consideration,
this event loop and callback rountines are often wrapped in virtual functions in abstract event
handling interfaces. This interface based system is one of the features that the Pineapple Object
Interaction Framework will include natively.

Althrough both support a wide range of platforms, there is little or no support for the Nintendo
DS system. Is it because the Nintendo DS has multiple screens? Or is it because of the complex
limitations in its hardware? Whatever the reason, development for the Nintendo DS is never
strong. To be truly platform independent the Pineapple Game Engine will have full support for
the Nintendo DS, as well as two desktop platforms.

1A free opensource 2D physics engine written in C++ by Erin Catto.
2An opensource 3D physics engine that features soft and rigid body simulation and collision detection.

9

Chapter 3

Analysis

In this section the problem with current game engines will be analysed, and formal requirements
for the project will be realised.

3.1 Scripting Languages in Game Engines

This section will discuss the current issues with scripting languages in game engines.

3.1.1 Introduction

Developing video games in recent decades has become an increasingly difficult and heavily in-
volved process. Triple-A games1 typically require a large team of skilled individuals, and can
take over a year to complete. This is in contrast to the early 1980’s where a few hobbyist pro-
grammers could group together and develop a triple-A game within a few short months. The
reason for this dramatic change in industry is due to the many advances in technology over the
past few decades. With an abundance of technology at the disposal of computer games stu-
dios nowadays, there are a whole host of considerations and technical challenges. For example,
a typical modern game might have the functionality to calculate three-dimensional shadows in
real-time, while integrating the velocities of the various physical bodies in the game to determine
if any of them have collided. Providing a simple interface to complex functionality such as this
is the job of the game engine.

Modern game engines typically encapsulate a large array of features suitable for developing
triple-A titles, while increasing productivity and reducing error on behalf the developers that
use them. This is often accomplished through the use of a scripting language, which acts as the
layer in between the developer and the raw components of the game engine. The game engine
acts as a virtual machine, dynamically interpreting scripts during runtime, allowing for detailed
debugging messages to be produced upon a runtime error. Using a scripting language offers

1Of an extremely high commercial quality.

10

further abstraction from the game engine, and gives games developers more time to concentrate
on the core game logic, rather than the complex integration of many of the high end features of
game engines today.

However, there are some problems with this approach. The first problem is that game logic can
only be processed as fast as the scripting language can be interpreted. For most mainstream
desktop and console games today, this isn’t really an issue. When the target platform is an
handheld system on the other hand, where every clock cycle counts, the interpretation will serve
as a major bottleneck. For example, Lua2 suffers an on average 22x slowdown compared to a
solution written in a compiled language.[9]

The second problem with this method is that a file-system is usually assumed to exist on the
target platform. However, this is not always the case, as can be seen with the Nintendo DS.
This will greatly limit what platforms the games that are built using these type of game engines
will run on.

Since the game logic is being stored as a script either on the consumers hard drive or embedded
in the executable, it is possible to decompile these scripts and inspect their source, which may
reveal confidential or copyright assets. This access of internal resources is usually not favourable
by the creators, who may need to keep their algorithms and data secure. Not only will hackers
be able to potentially decompile these scripts, but they may also have the ability to reconfigure
them, make modifications and recompile them back into the original game, hence altering the
gameplay in one way or another3.

3.1.2 List of Advantages

• Debugging - Object metadata can be inspected during runtime, and detailed reports can
be provided upon a runtime error.

• Abstraction - Hides the complex components of the game engine, allowing the developer
to concentrate on game logic.

3.1.3 List of Disadvantages

• Speed - Often significantly slower than their counterpart written in a compiled language.

• Decompilation - The source code can usually be inspected against the will of the creator.

• Recompilation - Modifications can be made to the decompiled source, and then recompiled
back into the application.

2A lightweight scripting language that is often used in game engines.
3This process is known as “modding”, and is popular in many games including the Unreal Tournament and

Half Life series.

11

3.2 Case Studies

This section will analyse two popular game engines in the form of two separate case studies.

3.2.1 Case Study I: GameMaker

This case study will focus primarily on the pros and cons of GameMaker’s inbuilt scripting
language.

History

First released as Amino in 1999 by Prof Dr Mark H. Overmars of Utrecht University, it was
primarily developed for creating short 2D animation sequences. An inbuilt scripting language
was present in Amino, although it was at a primitive level compared to the functionality available
in today’s GameMaker. As its user base grew, Animo was renamed to Game Maker4, introducing
more functionality specifically for creating games.[13] It was so successful that it gained the
attention of United Kingdom based company YoYo Games. Mark Overmars publicly announced
their partnership in 2007.[14]

Features of the Scripting Language

Developers use GameMaker to first create rooms, in which instances of objects will reside and in-
teract with each other. Rooms can be switched, and instances can be created and destroyed.[25]
Each objects behaviour is defined as executing a series of actions, when certain events occur.
Events can be anything from user input to collisions with other objects.[23] Actions are imper-
ative statements that can change its own state and the state of other instances. These actions
can be either be taken from GameMaker’s large action library or programmed in by the user in
GameMaker Language, GameMaker’s own scripting language.[11, p.225]

GameMaker Language, commonly abbreviated to GML, is structurally similar to C in many
respects. It is an imperative, object-orientated, event-driven language that supports a wide
range of programming constructs, notably:

• Functions - A host of functions are provided as core, and it is possible for the user to
define there own as a “script”. Applications can also be extended by loading in additional
functionality from dynamically linked libraries (DLLs) at runtime.[11, p.230]

• Variables - For simplicity, only two types are supported: string literals, and real num-
bers.[11, p.228]

4Today it is referred to as GameMaker, without a space.

12

• Scope Change - Variables can either be local to an instance, or local to a script. Instance
namespaces can be changed from one instance to another to access variables in another
instance’s scope.[11, p.239]

• Memory Management - Memory is automatically allocated for variables in the current
scope, and deallocated when they go out of scope.[25]

• Resources - There are no pointers in GML, instead each referable entity has a unique
identifier. This is applicable to all instances of objects, sprites, sounds, fonts, backgrounds
etc.[30]

• Cross-Platform - As of writing, GameMaker supports Windows PC, Macintosh and HTML5
browser based applications.[5]

Since GML can only be used for actions, the events, and object definitions are part of the
integrated development environment itself and can not be scripted.

Advantages

GML is incredibly easy to use, and being able to switch between instance namespaces allows
one instance to modify the state of or even destroy another instance.[11, p.239] It is especially
important for this functionality to be present in a game engine, since it allows the interactions
between the the individual entities to be modelled in consistent way. For example, if two physical
bodies were to collide, the current state of both of these bodies would directly affect the resulting
state of each of them. So the first physical body would have to inspect the state of itself and
the state of the other physical body to determine what forces are exerted upon each of them,
and what its resulting velocity and other such physical attributes should be set to.

The automatic memory management feature in GML frees the developers from touching com-
plicated garbage collection algorithms and worrying about memory leaks, letting them focus on
more important matters such as the quality of the gameplay. In addition to this, GML operates
in a pointerless environment, eluding the developers from the large array of defects that are
normally encountered whilst using pointers, such as segmentation faults and invalid memory
accesses. If any bugs are present in the code, GameMaker will issue detailed runtime error
messages, giving the user the option to ignore them.[11, p.60]

Another major advantage with GML is that extra components can easily be loaded in with
external DLL libraries.[25] Third party extensions such as physics and graphics libraries can be
linked into the executable in this way, providing developers with a large number of customisation
options.

Disadvantages

Although it is evident that GML is a good scripting language, it does have its drawbacks. One
of these is the limited data structures that are available to the developer. There are only two

13

types, string literals and real valued numerals, and there is no way to define new types.[25]
Although it does feature some simple data structures such as stacks and queues, these are not
very well integrated into the language, and thus cannot be used efficiently.[25]

When GameMaker builds executable files, the entire GML source is included as text within the
executable itself. The interpreter is also embedded so that the GML source can be interpreted at
runtime. The overhead of the interpreter significantly affects the execution speed of applications
created with GameMaker when compared to the speed of a native application written in a
compiled language.[9] It is also possible to decompile the executable file and extract the GML
source code from it. With each release of GameMaker, the executable format is cracked and
a new decompiler is released a short time later. Along with the GML source, all of the other
resources that are associated with the application get exposed, such as graphics and sound
data.[10]

3.2.2 Case Study II: Unreal Engine

This case study will focus on the notable features of Unreal Engine’s scripting language, features
of scripting languages that have not already been analysed in section 3.2.1.

History

Initially released in 1998 by Epic Games, the Unreal Engine featured a large set of integrated
features and game specific concepts as an all in one package.[29] The core performance critical
libraries were written in C++, while developers had access to the engine through the engines
own scripting language, UnrealScript.

UnrealScript went through several iterations of design, and multiple programming paradigms
were explored before a final style was decided. Tim Sweeney, founder of Epic Games and
designer of the Unreal engine, wanted to create a language that incorporated the “major concepts
such as time, state, properties and networking that traditional programming languages don’t
address”.[29] Sweeney first looked into using the Java virtual machine, but decided against it
since the overhead of both the scripting language and Java was too much for a playable frame
rate.[29] The Java virtual machine had inefficiencies in its garbage collector in the case of a large
object graph, and the overhead of the task switching within the virtual machine resulted in it
being too slow to be viable. A second early implementation was based on a Visual Basic variant,
but was discarded in favour of a C++/Java inspired syntax, which has the advantage of being
immediately familiar to the developers.[29]

Since making its debut with Unreal, several new versions of the language have been released,
each offering a wider variety of features.

14

Features of the Scripting Language

The language is primarily used for scripting gameplay events, where the set up of the world and
scenes are controlled within the Unreal Editor. The noteworthy features of UnrealScript within
the Unreal Engine are as follows:

• Extendible - In addition to the wealth of functions provided, developers can also use ex-
ternal DLL libraries for extra functionality.[29]

• Memory Management - An automatic garbage collection system frees memory from any
unused variables.[29]

• Game Specific Concepts - Major concepts of time, state, graphics, physics, artificial intel-
ligence and networking are part of the language definition itself.[29]

• Editor - A real-time editing and play testing tool.[31]

• Cross-Platform - As of writing Unreal Engine supports Windows PC, Microsoft Xbox 360,
Sony Playstation 3, Apple iOS, Android and Sony Playstation Vita.[32]

Advantages

The syntax of UnrealScript is very similar to that of C++ and Java, which makes it immediately
familiar to new developers. Borrowing concepts from C++ such as structs5 and automatic
garbage collection from Java, developers can quickly become comfortable with the language and
start building applications.[29] Incorporating graphics and physics is done automatically, and
creating a playable character in a simple test world can be accomplished within a considerably
short period of time. A lot of the level design can be done in real-time within the powerful
Unreal Editor, making for an easy sandbox to play-test design quickly and efficiently.[31]

The UnrealEngine offers a vast range of features for games developers, and provides cross-
platform support for many of today’s seventh generation home consoles.[32]

Disadvantages

There is a performance hit with processing UnrealScript: “Where design tradeoffs had to be made
in UnrealScript, I sacrificed execution speed for development simplicity and power.”[29] Tim
Sweeny has openly said that UnrealScript suffers from a 20x slowdown compared to C++.[29]

The UnrealScript game source files are compiled into bytecode, and stored with the Unreal
virtual machine as a package in the filesystem, allowing open access to the source code inside.
Rogue programmers can decompile and modify these bytecode files to make alterations to the
game. For instance, someone could modify the game logic so that the player would be invincible,

5Structure consisting of data members only.

15

thus changing the way the game is meant to be played. It cannot be assumed that all developers
who use the Unreal Engine will be happy that people can modify their game without their
consent.[16]

3.2.3 Conclusion

Both GameMaker and the Unreal Engine have similar advantages and disadvantages. The
various aspects of both game engines will be separated into two distinct categories. One Category
for those features that are desirable to have in a scripting language, and another category for
those features which are undesirable.

List of Desirable Features

1. Read and write access to other objects state variables.

2. Automatic memory management.

3. Inbuilt game specific concepts.

4. Extendable.

5. Platform agnostic.

6. Has a familiar syntax to C, C++ or Java.

7. Simple and powerful.

List of Undesirable Features

1. Slow performance compared to a compiled language.

2. Possible to decompile and recompile.

3. Limited set of data structures.

3.3 Requirements

In this section the desirable and undesirable features will be considered, and a formal set of
requirements will be established that will adhere to the aims and goals covered in section 1.4.
Where a particular requirement implies a desired feature, it will be marked with a DFx, where
x is the item number in the list of desirable features above. Undesirable features will be marked
in a similar fashion but with a UDFx. The requirements for the plug-ins are taken from the
discussion on related game engines covered in section 2.3.

16

1. Pineapple Object Interaction Framework requirements:

(a) Completely platform agnostic (DF5)

(b) Game objects

i. Inherit behaviour and traits from each other

ii. Inspect and alter the state of other objects (DF1)

iii. Make use of functionality provided in external modules (DF4)

iv. Receive events from external modules (DF4)

(c) Scene handling

(d) Automatic garbage collection for dead objects (DF2)

2. Plug-ins (external modules) (DF3) requirements:

(a) Implementations of each available for each supported platform (DF5)

(b) Input

i. Provide a standard format for user input

(c) Timers

i. Alarms can be set to trigger events in the future

(d) Physics

i. Model the physical bodies as axis-aligned bounding boxes

ii. Define collisions once, and check for them automatically during each frame

(e) Graphics

i. Sprites

A. Have a physical position

B. X and Y scaling

C. Horizontal and vertical flipping

D. Can have multiple frames

ii. Tiled Backgrounds

A. Have a physical position

B. Tiles are placed on the screen according to a tile map.

C. Can have two at any one time: a foreground and a background

(f) Sound

i. Play, stop and loop audio data.

These requirements almost completely include the list of desirable features, and do not include
any from the list of undesirable features. The only desirable features that are not covered in
the requirements are DF7 and DF6, which are to be considered during the implementation
phase. It is also important to consider the list of undesirable features during the design and
implementation stages to ensure that a successful solution is delivered.

17

Chapter 4

Design

This chapter will provide a detailed understanding of the design phase of the project, and the
conception of a platform independent solution.

4.1 Core Design Goals

Several key goals were kept in consideration throughout the entire design phase. These goals are
directly inspired from the list of desirable features of scripting languages in section 3.2.3, and
are as follows:

• Power & Simplicity

• Automaticity

• Flexibility

• Extendability

• Portability

4.2 Engine Architecture

This section details the design of each of the components that make up the Pineapple Game
Engine.

4.2.1 Game Objects

The state of a game is entirely dependent on the input events that are received from either
the player or the platform.[26] These events have the potential to trigger further events, which

18

may cause even further events to occur, resulting in a domino like effect where these somewhat
simple inputs can cause complex behavioural interactions. This idea that games are entirely
event-driven state machines is the core principle of the Pineapple Object Interaction Framework.

In a computer game, everything is an object, from the player to the weapons and bullets, to
the walls and aliens, everything can be represented by an object.[24] Game objects are physical
entities that exist in some shape or form in the game. Multiple instances of game objects can
be created, destroyed and process their own game logic. They are completely event-driven,
and so their state can only be altered on the occurrence of some event. In order for game
objects to receive events from external sources such as player input, they must register with the
corresponding event handlers. Other than that, all game objects will start off with three basic
events, which are as follows:

• Create - Fired when the object is first created.

• Step - This event is called once per frame to update the object with its own logic.

• Destroy - When the object is destroyed and removed from the game, this event is sent.

The requirements state that game objects must also be able to inherit behaviour and traits from
one another. A parent child relationship model has been formulated to allow child objects to
inherit behaviour and traits from their parent objects, specifically:

• One way - This relationship is strictly from parent to child, parent objects do not inherit
behaviour and traits from their children.

• Events - Child objects are registered for the same events that their parents are, and behave
in the exact same way by default. However, this default behaviour can be overridden with
new behaviour if necessary. Note that this does not alter the behaviour of the parent
objects, but specifically for that child object. This design is inspired from popular object-
orientated programming paradigms and abstraction mechanisms.

• States - The parent’s various state variables are passed on to the child.

The requirements also state that game objects may inspect and alter the state of other game
objects. To do this, one must first locate a particular instance of an object, and in the Pineapple
Game Engine there are two ways to do this:

• Searching - Game objects have the functionality to traverse through the list of instances
of any other object in the game.

• Events - Game objects may be passed by a reference to the particular instance of the
object through certain types of events, such as a collision event, where the reference of the
colliding instance may be passed.

19

Once an instance has been found, there are various things that can be done with it. The instance
can be destroyed, its state variables can be inspected and modified, behavioural procedures can
be invoked, and events can be sent.

To handle events that can only take place when two game objects are in a certain state, a
further component is needed, which has been named a trigger. These triggers routinely check
and compare all of the instances for two sets of game objects to see if a certain condition is
fulfilled, and if it is then the appropriate action is taken. An example usage of triggers are
for collisions between two objects, where the condition would be if their bounding volumes are
overlapping, and the action would be to send a collision event to each instance, and let the
instances decide what to do.

Defining common game elements using this event-driven framework is simply done. For an
example, consider the game space invaders. A core element of this game is the players ability
to shoot and destroy the aliens to clear the level. To define that system of behaviours using
this event-driven model, it would typically be done with three different interacting objects: the
player’s ship object, a bullet object and an alien object. Each object would have their own
events and behavioural routines. An example setup is shown in the table below:

Object Event Parameter Behaviour Execution Order

Ship Input Fire Button Create a Bullet 1
Bullet Create - Move Upwards 2

Collision Alien Instance Destroy Self 3
Alien Collision Bullet Instance Destroy Self 3

4.2.2 World

The world acts as an overseer for all of the game objects in existence, and manages the various
scenes in a game. Scenes can be menu screens, levels, or other such screens that are present in
video games. Once instances of game objects are created in the world, they will follow the rules
of the world, and interact with all of the other game objects in the current scene in a closed box
environment. Each scene can be represented by a game object which acts as a scene object by
creating initial game objects in the scene and setting them in the correct state. There are a few
functions that can be performed on the world, these are:

• Change Scene - To change the scene a new scene object is declared. The world will then
destroy all existing objects in the current scene, and create a single instance of the chosen
scene object.

• End - Ends the world, and quits the game.

Every game object has access to the world, and can perform any of the functions listed above.

20

4.2.3 Plug-Ins

In the requirements it states that game objects can make use of functionality and receive events
from external modules. These modules come in the form of platform independent packages,
which can be used together or individually. Each package can provide a set of events and
objects that are related to some game specific concept. The design of these plug-ins is heavily
influenced by the two case studies analysed in section 3.2, and the works surveyed in chapter 2.

Input

This module monitors state changes in the generic input peripherals of the player and the
platform, consequently dispatching them as events in a standard format. There are three main
types of event, all containing the associated key identifier as a parameter:

• Key Press - When a key is initially pressed down.

• Key Down - Sent every frame that the key remains held down.

• Key Release - When a key is released.

Timers

This module provides functionality for managing multiple timers. Timers can be started and
stopped, and are measured in frames. Only one event is required:

• Timeout - When a timer counts down and reaches zero. The associated timer identifier is
sent as a parameter to distinguish between multiple timers.

Physics

This module is responsible for modelling objects as physical bodies, providing core state variables
such as position, acceleration, and velocity, with additional functionality for collision checking.
One object is provided:

• Collision - Routinely checks whether two game objects bounding volumes overlap. All
game objects are modelled as axis-aligned bounding boxes. Makes use of a trigger.

To compliment this, an event is also defined:

• Collision - Sent by a collision object when two game objects are found to be overlapping.
The other instance involved in the collision is sent as a parameter to each object, as well
as a response vector for the collision.

21

Graphics

This module provides a suite of components for the cross-platform rendering of 2D graphics.
The objects that are included are as follows:

• Texture - A resource that represents a single image.

• Sprite - Created from a texture object. Sprites are automatically updated and are used to
draw moving images on the screen. Sprites have a position on the screen, a rotation angle,
horizontal and vertical flipping and scaling, and a visible flag.

• Animated Sprite - This is the same as a sprite, except that it is created from multiple
texture objects, and so contains multiple frames. Provides an extra attribute, which is the
current frame of animation.

• Tile Set - A resource that is made up of multiple tile graphics.

• Tile - Contains a tile graphic identifier, and horizontal and vertical flipping flags.

• Tile Map - A two dimensional array of tile objects, which represent how the graphics of a
tile set object are to be laid out.

• Map - Is the application of a tile map object to a tile set object. Maps are automatically
updated, and are used to render the background on the screen. Maps have a position, and
a horizontal and vertical scroll speed. Only two of these objects can be used at any one
time, one for the foreground, and one for the background.

Sound

This module is used for playing sound effects and background music. For the scope of this
project, advanced sound effects like echo and reverb are not necessary, and so only the basic
sound functions will be included. A single object is provided:

• Sound - Once loaded, the audio data can be played, looped and stopped.

22

Figure 4.1: The architecture design of the Pineapple Game Engine.

4.3 System Structure

This section will detail the three stages of the system, from starting up to shutting down.

4.3.1 Start Phase

Before using the Pineapple Game Engine, it has to be set up in the environment. The stages to
initialise the system are as follows:

1. Create the Platform - Firstly, the platform must be set up.

2. Create Resources - This is exclusively for the graphics and sound modules only, as texture,
tile set and sound resources need to be first initialised to be used later in the game.

3. Create the World - The world is created and each of the modules are initialised.

4. Create Game Objects - These are the initial objects that will make up the starting scene
for the game. Typically one scene object will be created which will set up the scene.

23

4.3.2 Processing Phase

Once everything has been set up, there is only a single thing that needs to be done. That is to
run the main loop of the world object, which steps the world and all of the game objects one
frame into the future. This fully automated system resembles one of the core design goals of the
Pineapple Game Engine. What the world is actually doing in each execution of it’s main loop
in no particular order is as follows:

• Step Game Objects - Run each game objects step event to process the game logic.

• Process Modules - Each module may have its own task that needs to be completed each
frame. For example, with the graphics module the sprites and maps need to be moved and
rendered to the screen.

• Process Triggers - Execute the triggers set actions if any of the conditions are evaluated
to be true.

• Collect Garbage - For any instances of game objects that have been destroyed in this frame,
remove them from the world and free any resources that they were using.

Notice that great care has been taken in the design of this system to eliminate the need for any
platform specific routines in the processing phase. The processing of the modules is not platform
specific, as they are considered to be platform independent.

4.3.3 End Phase

When the game has finished, these are the stages that shut down the entire system:

1. End the World - Any game object has the ability to end the world at any point in the
game, and when it does all of the game objects will be destroyed, and the modules will be
shut down.

2. Free Resources - Any resources that were created at the beginning of the the game need
to be released.

3. Free the Platform - Finally shut down the platform.

4.4 Platform Agnosticism

This section will detail the sections of the engine that are platform independent, and the sections
which are not.

24

4.4.1 Platform Specific Phases

The whole engine is designed to extensively exclude any platform specific routines during the
main processing phase. This will ensure that once the platform has been set up in the start phase,
the Pineapple Game Engine will run in a fully deterministic manner. The world object runs
the game using generic procedures, and the various integrated plug-ins are entirely platform
independent, providing the game objects with a perfectly platform agnostic interface to the
machine that the game is running on.

This leaves the start and end phases for the platform specific routines. During the start phase,
different parameters are required to set up different types of platforms. A window size is needed
to set up desktop platforms, but will not be necessary on handheld devices where the application
fills the entire screen. Aside from setting up the platform, any platform specific resource objects
that are used in the game are also initialised in the start phase. These resource objects need to
be set up for the current type of platform. For example, a texture object might load in an image
from the file-system on one platform, but read the data from the executable’s data store on
another. These subtle differences between each platform need to be addressed in the start phase
before the game begins, and in the end phase once the game ends for a completely cross-platform
solution to be realised.

4.4.2 Requirements

For a particular platform to be compatible with this system, there are some set requirements
that need to met by that platform. The only components of this design that are interacting with
the platform are the external plug-ins, which implies that the union of the set of requirements
for each of those plug-ins is in fact the set of requirements in question for the entire Pineapple
Game Engine. Listed, these are:

• Input - Some method retrieving input from the user.

• Graphics - At least one display device with support for two-dimensional graphics.

• Sound - Capable to output audio data to the user.

This implies that any platform that features the above functionality is a suitable candidate for
the Pineapple Game Engine.

25

Chapter 5

Development

In this chapter the justification of the target platforms is explained and the methods used for
the efficient implementation of the Pineapple Game Engine are presented.

5.1 Compiled Language Justification

The language that has been chosen to implement the game logic in the Pineapple Game Engine is
C++, mainly for its execution speed and portability. C++ programs are compiled into machine
code, alleviating the need for a virtual machine, and allowing applications to be developed for a
wide range of different operating systems and processor architectures. This choice of language
also satisfies DF61.

Most of the C++ compilers include a powerful compile-time optimisation feature, which can be
set to different levels of optimisation upon compilation. Compilers will inspect the C++ source
code, and over a series of iterations modify the code to increase its performance or decrease its
memory consumption. The full set of optimisations is too large to discuss in this section, but
the notable optimisation options are as follows:

• Omitting the frame pointer - On most machines functions will use up one of their registers
for a frame pointer, even if they don’t need one. Omitting the frame pointer relieves
the need for instructions to save, restore and set up frame pointers. It will also make
debugging impossible on some machines, so this is usually an option specifically for a
finished application.[2]

• Inlining functions - Inlining a function causes the compiler to replace every instance of the
function call with the function’s body, removing the overhead of function calling. However,
inlining large functions in several different places will increase the memory consumption
of the application. The compiler uses a heuristic to determine which functions to inline to
achieve optimal execution speed, whilst limiting memory consumption.[2]

1Has a familiar syntax to C, C++ or Java.

26

• Devirtualisation - A virtual function is an abstract function in an object, for which the
implementation of the function may be different for each child object. This functionality
can be overridden in several different layers of inheritance. The compiler usually stores a
vtable for each instance of that object in memory, which points to each implementation
for each virtual function, for that particular object. Each time a virtual function is called
the vtable is used to look up the memory location of the correct implementation. Devir-
tualisation attempts to replace virtual functions with normal functions where appropriate
to reduce these overheads.[2]

• Reordering functions - The compiler will reorder the functions in the object file to improve
code locality.[2]

• Reordering data structures - The data members of a structure need to be aligned to par-
ticular offsets in memory. For example an four byte integer needs to be aligned to a four
byte offset in memory. Padding is inserted in between some data members to ensure that
each member is correctly aligned. The compiler chooses the optimum ordering of data
members to reduce padding.[2]

• Memory aligning - Aligns the start of functions, labels, loops, and branches to a power
of two boundary. This increases the speed at which the processor can jump to arbitrary
instruction locations.[2]

• Fast math - Many optimisations can be made whilst performing mathematical functions.
Some of these include turning off error checking for single instructions such as square root,
and also assuming that the floating point values for both the arguments and the result of
a function are valid and finite.[2]

C++ is proven technology, and the international standard for games development.[7] It is par-
ticularly powerful as an object-orientated language, featuring function and operator overloading,
virtual functions and multiple inheritance. C++ boasts a fully supported set of modern con-
cepts, including a powerful generics system. Since its conception in 1983, many unique code
libraries have been built to solve many of the problems in computer science, making it an ideal
language for this project.[28, p.7]

5.2 Target Platforms

This section will explain in detail the justification for the chosen platforms for this project.

5.2.1 Considerations

For each platform the different application development languages and software development
kits must be compared. For a platform to be viable the software development kit must both be

27

available to unofficial developers, and the language used to build applications must be C++. A
brief comparison of the different platforms available today is shown below.

Platform Software Development Kit Application Development Languages

Windows Various C/C++, Java...
Macintosh Various C/C++, Java...

Linux Various C/C++, Java...
Xbox 360 XNA C#

Playstation 3 Authorised Developers Only C/C++
iPhone xCode Objective C++
Android Android SDK Java, some C++

Nintendo 3DS Authorised Developers Only ?
Nintendo Wii DevkitPPC (unofficial) C/C++, assembly

Playstation Vita Authorised Developers Only ?
Nintendo DS DevkitARM (unofficial) C/C++, assembly

Playstation Portable DevkitPSP (unofficial) C/C++, assembly

Two desktop platforms will be chosen to show that this project is a platform agnostic among
desktop environments, i.e. does not rely on components from a particular operating system.
To demonstrate that the Pineapple Game Engine is platform agnostic across all platforms, one
more platform will be chosen that is completely unique to the rest of them in terms of its user
interface and hardware components.

5.2.2 Microsoft Windows

Today, the single most popular platform for game development is Microsoft Windows, being the
main gaming system for 49% of gamers aged 16-49.[15] Windows development is well supported
with hundreds of pages of references and tutorials available on the Microsoft Developers Network.
Microsoft Visual C++ Express Edition will be used to develop the solution for the Windows
platform, since it features a large array debugging features specifically for Windows that will
speed up the implementation and testing phases.

5.2.3 Linux

Linux based systems are on the uprise, and since the operating system is built in a completely
different way to that of Microsoft Windows, it will show that this project is cross-platform in
terms of desktop environments. For Linux, the GNU2 compiler collection will be used for the
compilation process. There are some extremely powerful Linux specific development tools that
are to be used for debugging and profiling, which have been used in the validation stages of the
Pineapple Game Engine.

2A massive open source suite of software developed by thousands of collaborators.

28

5.2.4 Nintendo DS

The third and final platform for this project is the Nintendo DS. Most people believe that the
DS stands for “Dual Screen”, when in fact it initially stood for “Developer’s System”.[22] The
Nintendo DS was the first handheld console to incorporate so many features into one device,
most notably: two screens, one with touch sensitivity, and a microphone. Nintendo believed that
“it gives game creators brand new tools which will lead to more innovative games for the world’s
players.”[22] This is certainly true, considering the huge success of the system and variety of
games that are developed for it.

The official development kit (NitroSDK) is only available to authorised Nintendo developers,
but there does exist an unofficial development kit in the DevkitPro3 tool-chain, DevkitARM4.
Included in the DevkitARM package is libnds, which is a library for the development of Nintendo
DS applications. There is only a handful of reference material and tutorials publicly available for
Nintendo DS development, which means that the Nintendo DS version of the Pineapple Game
Engine will be a significant challenge. Refer to section 7.2 on page 47 for a detailed review of
the technical challenges involved in Nintendo DS development.

5.3 Implementation

This section will detail the implementation of the different components that make up the Pine-
apple Game Engine, focusing on the Pineapple Object Interaction Framework. For reference
purposes, a complimentary UML diagram of the Pineapple Game Engine is attached in ap-
pendix A.

5.3.1 Pineapple Object Interaction Framework

This section will give a detailed description of the core components that make up the Pineapple
Object Interaction Framework.

5.3.1.1 Objects and Instances

Instance Base

The first component of the Pineapple Object Interaction Framework is the InstanceBase. The
InstanceBase class represents the base traits, behaviour and events for every game object, where
traits are represented by variables, behaviour by functions, and events by virtual functions.
InstanceBase is the top most superclass for game objects, allowing every game object to be up-
casted5 to an InstanceBase object. This functionality is useful for executing common procedures

3A series of unofficial software development kits for various video games consoles.
4The specific tool-chain for ARM based processors.
5Converting a derived class pointer to a base class one.

29

for every game object, such as traversal or destruction. This is similar to Java, where every class
is an “Object”.[1]

InstanceBase objects have the three basic events: onCreate, onStep and onDestroy, which were
covered in the design chapter. Each event is implemented as a virtual function with an empty
function body by default. This means that every game object isn’t required to provide behaviour
for these events, but rather leaving it as a choice for the developer.

InstanceBase objects have two functions that destroy them, one named destroy which also sends
an onDestroy event, and one named kill which does not. The latter is provided for cases where
instances need to be quickly cleaned out of memory without invoking any behavioural rountines
specific to the game logic, such as during a change in scene. Even though the onDestroy event is
not guaranteed to be called, the destructor of the class is, which is used to release any resources
that were being used by the object. This destructor is a in fact a virtual destructor, which
means that when a pointer to base is deleted6, the destructor in dervied is actually invoked.
This ensures that any memory that the derived object was using in addition to the base object is
also released, and is a behaviour recommended for partially abstract classes by Bjarne Stroustrup
himself.[28, p.324]

When destroy or kill is invoked the instance is not deleted straight away, instead the instance is
flagged as “dead”, and is cleaned up with any other “dead” instances during garbage collection.
This is done to avoid potential invalid memory accesses during game logic. For example consider
the situation where object A and object B collide, and both recieve an onCollision7 event with
a pointer to the other involved in the collision. Now if object A’s onCollision event is called
first and object A is destroyed as a result and the memory is freed, when object B’s onCollision
event is called the pointer to the instance of object A it recieved is now invalidated, and any
access to this pointer will cause a segmentation fault. Deleting all of the “dead” instances at
the same time, outside of game logic, avoids this potential error and provides a safe sandboxed
environment for games to run in.

Instance List

The next most important component to discuss is the InstanceList, which can store an arbitray
number of game objects. The InstanceList class provides methods for storing and removing
game objects, as well as traversing though them. It acts as a templated container, which can
store any type of game object, and can also be upcasted to an InstanceListBase object which
treats the game objects contained within as type InstanceBase. The InstanceListBase version is
used throughout the Pineapple Object Interaction Framework as a generic container for game
objects.

But what data structure should InstanceList use to store game objects? The time complexities
of the basic operations of two suitable candidates are compared in the table below:

6The memory it was using is freed by the platform.
7Inherited from a the physics plug-in, explained in detail later on.

30

Data Structure Insert Remove Traverse

Vector O(n) O(n) O(n)

Doubly Linked List O(1) O(1) O(n)

The vector data structure has the advantage of having its elements strored in a contiguous
memory block, which means that when its elements are accessed, several consecutive elements
are also loaded into cache lines at the same time, providing a higher locality of reference. This
will greatly reduce the number of cache misses during traversal, compared to that of a linked list,
where all of the elements are stored at arbitrary locations in memory. However, it is extremely
important to have fast insertion and removal operations, especially during the execution of
complex scenes where game objects are being created and destroyed multiple times per second.
The fast implementation of these operations for a linked list outweighs the disadvantage of
cache misses during traversal, and that is why a doubly linked list was chosen for the internal
representation of the InstanceList class.

To adhere to good software engineering principles, the insertion, removal and traversal operations
on an InstanceList object are generalised through the use of iterators. This allows the underlying
representation of InstanceList to be changed without breaking other parts of the system. The
iterator class for InstanceList is called InstanceIterator, and InstanceIteratorBase is used for
iterating over InstanceBase objects in an InstanceListBase.

Instance Manager

The InstanceManager class stores pointers to each game object’s own InstanceList. These In-
stanceList ’s are stored in an ordered linked list, where each InstanceList is ordered according
to it’s priority. The priority of the InstanceList can be changed during runtime, automatically
reordering the linked list. The main use of this class is to provide a complete snapshot of all
of the instances that exist in the game at that current moment. This is known as the master
instance table, which can be used to traverse through every existing instance in the game.

The InstanceManager class is also used for processing each instances onStep event, garbage
collection of instances, and deleting any remaining instances at shutdown.

Instance Static

The Instance class is a templated class which is completely made up of static data members
and functions. There is no way to create an object of Instance, nor is there any need to. It
takes a game object class as its template parameter and acts as a static store of information and
functionality related to that particular game object. It is used for the following:

• Creating - All instances of game objects are created using the Instance class.

• Storing - The Instance class is where the InstanceList for the game object is stored.

31

• Registering - Ensuring the instance lists appear in the InstanceManger.

The Instance class operates in a very special way, exploiting implicit template instantiation to
automate the whole set up for each game object without the developer even lifting a finger. This
is discussed in detail in section 7.1.1 in the Technical Challenges chapter.

5.3.1.2 The World

Task Manager

The TaskManager is a static class that is responsible for managing the tasks that need to be
carried out during the start, process and end phases. Each task is represented as a function
with a priority, and so each list of tasks in the TaskManager is stored as an ordered linked list
of function pointers, ordered by their priority. Functions can be added as tasks to any of the
three lists if firstly they do not take any parameters, and secondly do not have a return value.

There are three objects defined that make the process of adding tasks automatic. Each object
has only one possible constructor, which takes two arguments: a pointer to a function that
matches the requirements of a task, and a priority as an integer. These objects have been named
AutoInitTask, AutoProcessTask and AutoShutdownTask, where each object adds a task to a
different list upon construction. For each class that requires a particular task to be executed, one
of these three objects is included in the class declaration as a static data member with a function
pointer and a chosen priority as parameters. Once the static member is initialised, the task will
be added to the TaskManager. In C++, the initialisation of static data members is carried out
before the program has even hit the main function, which means that the TaskManager is ready
to be used as soon as the main procedure is executed.[2]

Triggers

The functionality of triggers is given by the Trigger and TriggerSelf classes, both of which
are derived from the TriggerBase class. The Trigger object is constructed by providing two
different InstanceList objects, and the TriggerSelf object is constructed by providing only one
InstanceList object. These triggers are actually interfaces, containing a single virtual function
that must be implemented, which takes two instances as arguments. When the Trigger object
is processed, the function is applied to each possible two instance combination, one from each
InstanceList object. The TriggerSelf object is processed in a similar way, but the function is
applied to every possible combination of two instances from a single InstanceList object. The
use case scenarios of triggers are explained in section 4.2.1.

Platform

The Platform interface class represents a generic platform, the implementation of which is dif-
ferent for each platform. Each implementation of the Platform interface may have different

32

parameters for its construction as discussed in section 4.4.1. However once constructed, the cur-
rent platform can be accessed by other objects in a standard way, without the worry of writing
platform specific code. The interface defines the following virtual functions:

• pollEvents - The platform checks and stores all events that have occurred since this function
was last called.

• getEvents - The player and platform events are retrieved as a linked list of Event objects.

• queryDevice - Access to various devices such as the mouse or touch screen.

• setFullScreen - Switch between windowed mode and full screen mode on desktop environ-
ments.

• swapBuffers - Some systems that use double buffers require that the back buffer be swapped
with the front buffer once per frame.

• waitForNextFrame - A function that simply waits until the current frame has finished,
delivering game play at a maximum of 60 frames per second.

This functionality is implemented by virtual functions, and any functionality that is unavailable
is simply left with an empty function body. This is done so as to not break games that use
different features on different devices.

But how does the system determine which platform it is currently running on? During compila-
tion, a preprocessor flag that represents the current platform is defined in the compilers options.
This is called a preprocessor define, and can be used to determine which sections of the source
code to include in the current compilation unit. Using this functionality, the correct platform
program code and libraries are always included automatically.

World

The World object is at the top level of the application, and is responsible for processing each
and every frame. Only one World object is created, and upon construction it takes a pointer to
a Platform object, which is stored for later use. When the world is created the tasks that have
accumulated in the initialisation task list in the TaskManager are executed, and a static World
pointer in the InstanceBase class is set to the value of this object, allowing every game object
access to the functions provided by World.

Once created, to step the game one frame into the future, the mainLoop function is called. The
mainLoop returns the value true if the World has not yet ended, and false otherwise. This allows
the user to process the entire world, from start to finish with a single line of code:

whi l e (world . mainLoop ()) ;

33

To end the World and finish the game the end function can be invoked. When the World object
is deconstructed, the tasks in the shutdown task list in the TaskManager are executed.

Figure 5.1: The main loop of the World

The program below shows the stages involved in setting up the world and the platform, and
creating the first object. However, once this “setup” code has been written, it never needs to be
changed, since the initially created object can be used to drive the game from then on.

34

#include <pineapp le / p ineapp le . h>

struct Scene : public InstanceBase { /∗ Empty o b j e c t ∗/ } ;

Platform ∗ in i tP l a t f o rm ()
{

// Choose the p la t form to c r ea t e based on preproces sor d e f i n e s
#i f d e f PA_LINUX

return new LinuxPlatform (640 , 480 , "Pineapple ") ;
#e l i f d e f i ned PA_WINDOWS

return new WindowsPlatform (640 , 480 , "Pineapple ") ;
#e l i f d e f i ned PA_NDS

return new NdsPlatform () ;
#end i f

}

int main ()
{

Platform ∗plat form = in i tP l a t f o rm () ; // I n i t i a l i s e the p la t form
World world (p lat form) ; // Create the world
Instance<Scene >: : c r e a t e () ; // Create scene o b j e c t
delete plat form ; // Shutdown the p la t form
return 0 ; // Exi t

}

Figure 5.2: The general setup code for any game.

struct Scene : public InstanceBase
{

void onCreate () {
PA_PRINTF("He l lo ␣World\n") ;

}
} ;

Figure 5.3: Hello World

5.3.1.3 External Module Support

The final component of the Pineapple Object Interaction Framework is used to provide an in-
terface to additional functionality for game objects through the use of external modules such
as input timers, physics, graphics and sound. These plug-ins must be able to provide addi-
tional events and procedures to the ones provided in InstanceBase. Two separate designs were
considered for the implementation of this component, one using inheritance and the other us-
ing composition. Once an external module has been implemented with this component, the
developer should be able to utilise the functionality inside in a simple and powerful way. Min-
imising the work done by the developer, while providing a high execution speed is a key goal in
the implementation.

The general structure of each design’s usage can be seen in appendix B. Using the composition

35

structure, external modules are attached to the game object by composition, and the functional-
ity for the modules can be called through the modules corresponding object. Events are hooked
in to the game object by providing a callback function pointer for each event. However, in the in-
heritance structure, events from modules are inherited as virtual functions into the game object.
Other functions and state variables are also inherited in the same way. This inheritance struc-
ture uses less logical lines of code than the composition one to achieve the same functionality,
making it the ideal choice.

Handler

The Handler class is the implemented interface for the inheritance design discussed. It is an
extension of the InstanceBase class, and can automatically process event handling and behaviour
for external modules, satisfying DF4 of scripting languages. Each module includes a process
routine that defines the necessary steps to process and handle events for a single instance that
uses it. For example in the process function for a physics module, the forces on the physical
body will be resolved and the position of the physical body will be updated. Each Handler
class is templated with the module class that derives from it, giving each module a copy of the
functionality, but which is specific to that module.

Figure 5.4: The class hierarchy of the game objects and external modules in the Pineapple
Object Interaction Framework.

36

To process the instances the templated Handler class traverses all of the exisiting instances in
the master instance table from the InstanceManager, and runs each process rountine for each
instance for that templated module. This is done automatically using the TaskManager for each
module on every instance, thus correctly updating all game objects.

The master instance table consists of instances of game objects in their generic InstanceBase
form. Whether an instance is using a particular module or not can be easily tested through the
use of a dynamic cast8. The handler also features a set of static virtual functions9 that can be
used for pre and post processing tasks that are required by the module.

Figure 5.5: A Handler’s process routine for a particular Module

Justification for Diamond Inheritance

The so called “dreaded diamond of death” is a problem with class hierarchy where an object
is derived from several other objects which all derive from the same base object.[21] This can

8A down-cast from a base class to a derived class, which fails if the derived class does not derive from the
base class.

9These are not part of the C++ language definition, but this paradigm can be simulated through the use of
templates.

37

be seen in figure 5.4 with game objects at the derived end, and InstanceBase at the top of the
diamond. It is generally avoided because the derived object will have multiple copies of the base
object in its definition, one for each possible inheritance path, resulting in ambiguous behaviour
when a function in the base class is invoked, since the function will appear mutiple times in the
class definition. In C++ this problem is easily solved through the use of virtual inheritance,
which ensures that only one copy of the base class is present in the classes at the bottom of the
diamond.

However, this model imposes the restriction that external modules must not override any func-
tions or implement any virtual methods in InstanceBase. In practice this is unnecessary anyway,
since the Handler class provides more than enough functionality for manipulating instances.

5.3.2 Plug-Ins

In this section the implementation specific details for the various plug-ins are briefly summarised.

Input

Most of the work for this module is already handled by the Platform object. All the input
module does is dispatch these input events from the platform to the game objects in the form
of onKeyPress, onKeyDown and onKeyRelease events with the key in question as a parameter.

Timers

A fixed number of timers are available in this module, each having a unique identifier. Each
timer can be started, and stopped, and when a timer counts down to zero, the onTimeout event
is sent with the timer identifier as a parameter.

struct Scene : public InputHandler , public TimersHandler
{

void onKeyPress (unsigned int key) {
i f (key == PA_ESC)

startTimer (0 , 6 0) ;
}

void onTimeout (unsigned int id) {
world−>end () ;

}
} ;

Figure 5.6: Combining functionality from two modules

38

Physics

Each physical body has a vector data structure for its position, velocity and acceleration. These
vectors use floating point calculations on desktop environments, and fixed point operations on
the Nintendo DS system, since the Nintendo DS has no floating point processing unit. The
Collision object is implemented using the Trigger objects provided in the core framework. Two
objects collide if their axis-aligned bounding boxes (AABBs) overlap, which sends an onCollision
event if they do overlap with a pointer to the other instance and the corresponding response
vector as parameters. AABB collision detection was chosen for its simplistic implementation,
the psuedo code for which is attached in appendix C.

Graphics

The graphics module consists of a set of abstract classes and two different implementations,
one in OpenGL for desktop computers, which was chosen for its cross-platform nature, and one
which is specifically written for the Nintendo DS. There are two main subsystems in the graphics
module, the sprite engine, and the tile engine. The sprite engine is responsible for rendering
animated images to the screen, while the tile engine draws a series tiles on the screen in the
form of a foreground and a background.

Sprite objects are created from Texture derived resource objects, and Map objects are created
from TileSet derived resource objects. The same way the correct Platform object is chosen using
preprocessor defines, these resource objects are created in a platform specific way during the
start phase, after the Platform object has been initialised. On Windows and Linux FileTexture
objects are created by specifying a file name, while on the Nintendo DS, NdsTexture objects are
created from graphics memory addresses. Both of these objects implement the Texture interface,
and both have a createSprite method which returns a pointer to an abstract Sprite object, which
also has a different underlying implementation for each platform. Map objects are created in a
similar way except a concrete TileMap object is passed as a parameter to the createMap.

39

Figure 5.7: Abstract sprite creation on Windows and Linux platforms

Both createSprite and createMap from the Texture and TileSet interfaces respectively feature
an optional parameter screen, which specifies which physical screen to create that object on.
This parameter is only used on devices with multiple screens, such as the Nintendo DS.

The Nintendo DS implementation of the graphics engine is discussed in great depth in section
7.2.

Sound

Sound objects are created in a similar way to graphics objects, except there is no createSound
function. Sound is simply an abstract class that is either implemented using FMOD10 on
Windows and Linux, or maxmod11 on the Nintendo DS.

5.4 Putting it all Together

The following shows how a game object is defined by utilising functionality from different mod-
ules, and making use of resource objects for sprites and sounds.

10A proprietary audio library created by Firelight Technologies.
11An audio system built for the Gameboy Advance and Nintendo DS by Mukunda Johnson.

40

struct Player : public TimersHandler , public InputHandler , public Physics2DHandler
{

bool canShoot ;
Sp r i t e ∗ s p r i t e ;

Player () : canShoot (true){
s p r i t e = re sou r c e : : playerTex−>c r e a t e Sp r i t e () ;

}

~Player () { delete s p r i t e ; }

void onCreate () {
sp r i t e −>ro t a t i on = 270 ;
s i z e . c a r t (28 , 2 8) ;

}

void onKeyDown(unsigned int id) {
Vector increment ;

switch (id) {
case PA_UP:

increment . po la r (0 . 1 f , PA_DEGTORAD(sp r i t e −>ro t a t i on)) ;
v e l o c i t y += increment ;
break ;

case PA_LEFT:
sp r i t e −>ro t a t i on −= 4 ;
break ;

case PA_RIGHT:
sp r i t e −>ro t a t i on += 4 ;
break ;

case PA_SPACE:
i f (canShoot) {

r e sou r c e : : f i reSound−>play () ;
Bu l l e t ∗ bu l l e t = Instance<Bul let >: : c r e a t e () ;
bu l l e t −>po s i t i o n = po s i t i o n ;
bu l l e t −>ve l o c i t y . po la r (7 . 0 f , PA_DEGTORAD(sp r i t e −>ro t a t i on)) ;
canShoot = fa l se ;
s tartTimer (0 , 1 0) ;

}
}

}

void onMove () {
sp r i t e −>po s i t i o n = Vect2<int >((int) p o s i t i o n . getX () , (int) p o s i t i o n . getY ()) ;

}

void onTimeout (unsigned int) {
canShoot = true ;

}

void onCo l l i s i o n (Rock∗ , Vector&) {
des t roy () ;

}

void onDestroy () {
world−>end () ;

}
} ;

Figure 5.8: The Player object in the game Asteroids

41

Chapter 6

Project Management

This section will detail the various aspects of project management that were utilised throughout
this project.

6.1 Software Development

This section will discuss the software engineering concepts that were used throughout this pro-
ject’s software life cycle.

6.1.1 Software Development Model

The software development model chosen was the V-model, where the solution is tested against
the requirements after each coding phase. This model was chosen primarily for its extensive
verification and validation phases, and with a project such as this one, constantly verifying that
the software works, and validating that the software is in line with the requirements is key to
developing a functional solution.

6.1.2 Software Engineering Principles

To take complete advantage of C++, an object-orientated programming paradigm was adopted,
where the solution consisted as a series of separate objects. The Pineapple Object Interaction
Framework is designed and implemented as a completely extendible piece of software, providing
non-intrusive ways for new functionality and platforms to be plugged in. To ensure compatibility
and enforce strict requirements for external plug-ins, interfaces and partially abstract classes are
used extensively. Polymorphism concepts are used throughout to generalise functionality and to
process objects in a uniform way.

42

6.1.3 Source Code Management

The codebase for this project is quite large, and so major revisions need to be recorded in a
standard format. There are a number of source code versioning tools that are freely available
that would do the job. From these, git was chosen for its incredibly simple interface between
repositories. Since the project source tree would be present in several different locations at any
one time, git1 was more than capable.

There was a repository set up on an offsite privately owned server, that was to be used as a
primary back up store, and serve as a intermediate link for commiting changes between the
repositories on the separate platforms. As well as the server repository, a repository exists on a
Windows system, a Linux system and a USB stick.

Whenever a revision is made the files in the repository are committed and pushed to the reposit-
ory on the private server. With every major update to the codebase, the files from the repository
are copied to a USB stick for extra security. Comments are recorded with each update so that
the history of the project can be tracked to make sure that the project is on schedule.

6.2 Verification

This section details how the software was verified to fit with the requirements of the end user.

6.2.1 Requirements Analysis

In chapter 3 the requirements were directly derived from the features of two popular game
engines. The design of each was carefully broken down to determine which parts worked well,
and which could be improved upon, and from this and additional analysis in chapter 2, the
requirements for a solution were defined that also matched the project’s aims and goals in
section 1.4.

6.2.2 Verification of Design

The system was designed in such a way that completely abstracted out the concept of a video
game, and broke it down into a fully event driven system consisting of game objects and the world.
The design patterns that were used incorporated limitless bounds on extendibility, allowing the
use of external plug-ins to add a variety of game specific concepts to the existing system, and the
ability to port to any platform that matched the platform requirements determined in section
4.4.2.

1A distributed revision control and source code management system.

43

6.3 Validation

This section details how the software was validated to be working correctly, and free from defects
and failures.

6.3.1 Unit Testing

The entire system is built up in a very modular way, where each module represents a single
concept by itself. As each module was developed a test program was built for each module to
validate that the individual module was functioning correctly. For example, the LinkedList class
was tested by applying every possible combination of operations in every possible order, the
output of which was human validated.

6.3.2 Integration Testing

When a complete package of modules was completed, they were integrated into the system, and
tested together. Since the system is built in a generic way, with a set of interfaces that link
different parts of the system together. Some of the defects with the integration stage could
be detected at compile time, when the implementation of the abstract classes was not correct.
The actual communication and usage of the interfaces were checked to see if the packages were
working well with each other and matching the design specifications in chapter 4. There were
a total of nine separate packages in this project, the Pineapple Object Interaction Framework
was one package, each of the plug-ins was another package, and each platform was a package.
Minimal coupling between the various packages made the integration testing a clean and simple
process, and each of the plug-ins were implemented completely independent of each other.

Figure 6.1: Integration dependency graph

However, validating that the packages can be integrated correctly is not enough, there are various
other defects that are difficult to detect that need to be tested for. One such defect is a memory
leak, where memory allocated by the system is not freed when it is not needed anymore, and is a
common cause of software aging. For this, valgrind2 was used to run the system in a sandboxed

2A GPL licensed programming tool for memory debugging, memory leak detection and profiling.

44

environment and to show any memory leaks upon exit of the program. Valgrind was also used
to detect invalid read or write operations to memory, and for debugging segmentation faults.

To test the Nintendo DS developers usually have access to a Nintendo DS development kit,
which includes a powerful hardware debugger that can sandbox the software in a similar way
to valgrind. Since this hardware is unavailable for unofficial developers, a software debugger
for analysing memory usage and finding memory leaks was developed and used to debug the
Nintendo DS version.

6.3.3 Platform Testing

A key element to the design of this project was to build a completely platform agnostic solution,
meaning that not only should it run on different platforms, but it should run in the exact same
way. This was achieved by compiling the same game for different platforms and checking for
any discrepencies between them.

6.3.4 System Testing

As this project grew, and more and more plug-ins were built, several small games were developed
using the Pineapple Game Engine for demonstrative purposes. These games tested that the
event driven model in the Pineapple Object Interaction Framework and the different plug-ins
can work together to create small scale games, and any features that were needed but not present
were analysed and refitted into the design to adhere to the user requirements. At the end of
development a rather large project was undertaken to test if the Pineapple Game Engine can be
used in real world applications, which is discussed in further detail in section 8.1.

6.4 Criticisms of Project Management

Due to the nature of this project, the designs were often reworked in the early stages of the
project. It was only after a the design was iteratively improved on, that the separation of the
Pineapple Object Interaction Framework and the platform agnostic component, as well as the
integration of external modules was truly achieved.

45

Chapter 7

Technical Challenges

7.1 Pineapple Object Interaction Framework

7.1.1 Automation: Exploiting Implicit Template Instantiation

In C++ templates are used to create generic classes and functions that can be used with variable
types of objects. This pattern is used to create generic containers and is prominently used in
C++’s Standard Template Library (STL). For example, in STL there is a vector object which
can store arbitrary types of objects such as integers and strings alike, just by specifying int or
string as a template parameter.

At compile time, the actual templated class or function body is copied and adjusted accordingly
for each possible template parameter. The way the compiler knows which templated versions
to build is through explicit and implicit template instantiation. Explicit template instantiation
involves the programmer explicitly defining that a class or function uses certain templated para-
meters. Implicit template instantiation is where the compiler will observe the program code and
create each templated version on demand, as it is implicitly used. The latter method is often
used as it involves less work for the programmer, and utilising this method is what makes the
Instance static class completely automatic.

As a quick reminder, the Instance static class acts as a static store of information for game
objects and is responsible for the following:

• Creating - All instances of game objects are created using the Instance class.

• Storing - The Instance class is where the InstanceList for the game object is stored.

• Registering - Ensuring the instance lists appear in the InstanceManger.

For each game object that the Instance static class is templated with, an InstanceList object
needs to be created, and then this InstanceList object needs to be added to the InstanceMan-
ager ’s master instance table. The only question is, how will the Instance static class know about

46

the existing game objects, without explicitly defining each game object as a template parameter
to Instance using explicit template instatiation?

Looking back at how implicit template instantiation works, each game object needs to be used
as a template parameter with Instance for a new templated version to be created. To make sure
that this happens with every game object, the decision was that game objects can only be created
using the Instance static class with that game object as a parameter. Once the compiler notices
that the game object has been used as a template parameter with the Instance static class, it
will create a parametrised version specific to that game object. Then all of the static variables
which are used in this new version will be instantiated, including the InstanceList object and
an InstanceManager object. The InstanceManager object simply adds the InstanceList object
to the master instance table in its constructor. The InstanceManager object was not actually
initially used in the class, it was only included so that it can be constructed. This meant that
in order to actually instantiate the InstanceManager object, a single mention of the object had
to be included in every function of the Instance static class, which read:

(void) instanceManager ;

The void cast is necessary only to eliminate warning messages from the compiler that the state-
ment is not doing anything, when in fact it is doing everything!

This also has the added benefit that the Instance static class only stores information on game
objects which have been created.

7.2 Nintendo DS

This section will discuss the various technical challenges associated with the development of the
Nintendo DS version of the Pineapple Game Engine.

7.2.1 Hardware Specification

This section will detail the technical properties of the Nintendo DS system.

• Two TFT LCD Screens - The Nintendo DS features two screens both of the same resolu-
tion: 256 pixels by192 pixels, and bit depth: 18-bit (262,144 colours). The bottom screen
is also touch pressure sensitive.

• 4MB Main RAM - This is the main RAM for the Nintendo DS, and has to hold the entire
executable, as well as any memory during runtime that the application is using. When
the final demonstration game for the Pineapple Game Engine was first compiled for the
Nintendo DS, it failed because the executable would not fit into 4MB. However, this was
largely due to the resources such as sound and graphics data that were embedded into the
executable. To solve this problem the quality of some of the sound effects and images was
lowered.

47

• 656kB VRAM - This is where all of the graphics data, including the textures, sprite and
backgrounds associated with the application are stored. To give the Nintendo DS version
of the Pineapple Game Engine the same graphics capabilities as the desktop version special
memory managing algorithms were developed, which will be covered in depth in section
7.2.3.

• 67.028 MHz ARM946E-S - This is the Nintendo DS’s main processor, where most of the
application will be executed. Compared to a 2.5GHz processor on a desktop computer, this
processor only runs at about 1/40th of that speed, requiring highly optimised code. Per-
formance was considered throughout the entire implementation stage, and so the Nintendo
DS version was realised at the full 60 frames per second.

• 33.514 MHz ARM7TDMI - This is the second processor present on the Nintendo DS, and
is primarily used for performing background tasks such as handling user input, streaming
audio data and providing access to the system clock.

• No Floating Point Unit - There is no support for floating point operations on the Nintendo
DS. There is software emulation available for floating point operations, but this is far to
slow to be viable. Fixed point integer operations have to be used instead. This was the
case for the physics engine, where all floating point vector operations were replaced with
fixed point counterparts.

7.2.2 Graphics Capabilities

The Nintendo DS features two separate graphics cores, the main core, and the sub core. The
main core can be used for both 2D and 3D graphics, wheras the sub core can only be used
for 2D graphics. Each graphics core can render to either screen, and they can each be set in
different modes of operation. For the various modes of operation that are available for each core
see appendix D. It is important to note that 3D graphics cannot be delivered to each screen
simultaneuosly at the full 60 frames per second, since there is only one 3D core. However, it is
possible to render 3D graphics to both screens at the same time at half the frame rate, since the
3D core has to render to one screen first, then render to the other screen second. This is not
usually done in practice because of this restriction.

For the scope of this project, only 2D graphics needs to be considered. When the main core is
in a 2D mode it behaves in exactly the same way as the sub core however, there is a number
of restrictions with the 2D graphics capabilities. Each core in a 2D mode has the following
limitations:

• 128 Sprites - Only 128 sprites can be displayed on the screen at any one time. This
is different to how many can be stored in memory at any one time. 128 sprites refers
specifically to the Object Attribute Memory (OAM) in the system. Each sprite has a
position, the option of being flipped horizontally or vertically, a visible flag, and various

48

other attributes that tell the Nintendo DS what to draw and where to draw it on the
screen.

• 32 Affine Matrices - Each matrix represents an affine transformation that can be used to
rotate, scale, and shear sprites. Multiple sprites can share the same matrix, but multiple
matrices can not transform the same sprite.

• 16 Sprite Palettes - Each palette consists of only 16 16-bit colours, and can be shared
between several sprites. To save on sprite graphics memory, it is common practice to swap
the palette of a sprite to make it appear a different colour. An example of this is shown
in figure 7.1.

• 16 Extended Sprite Palettes - These palettes are used in a similar fashion to regular sprite
palettes, but can hold up to 256 16-bit colours.

Figure 7.1: A classic example of palette swapping in the Mortal Combat series.

It is not desirable to have these limitations applied to both the top screen and the bottom screen,
so it was decided for the main core to be set in a 3D mode, and to blit 2D sprites to the selected
screen using 3D primitives. This allows one screen to far surpass the set of limitations above.

7.2.3 Organising Video Memory

7.2.3.1 Bank Mapping

The Nintendo DS only has 656kB of dedicated video memory, which has to hold all of the
textures, colour palettes, fonts and background graphics for the application. The VRAM is
split up into nine consecutive blocks, labelled VRAM banks A - I. The first four banks are the
largest, each with a capacity of 128kB, which are mainly used for 3D textures, background and

49

sprite graphics. The last five banks are usually used for colour palette data. The various VRAM
banks can be set to different modes of operation depending on what needs to be achieved. For
example, in a 3D adventure game the optimal memory bank mapping might be to use VRAM
banks A - D for 3D textures for the main engine, and for the sub engine: map VRAM banks H
and I for the background and sprites respectively.

For the Pineapple Game Engine all but one bank is utilised, the resulting mapping is as follows:

• Main Core (Mode 0, 3D)

– Bank A (128kB) → Textures

– Bank E (64kB) → Texture Palette

– Bank B (128kB) → Background

– Bank G (16kB) → Background Ext Palette

• Sub Core (Mode 0)

– Bank D (128kB) → Sprites and Palettes

– Bank I (16kB) → Sprites Ext Palette

– Bank C (128kB) → Background

– Bank H (32kB) → Background Ext Palette

• Bank F (16kB) → Unused

Figure 7.2: A diagram showing the different VRAM mappings possible for the Nintendo DS.

50

7.2.3.2 Managing Resources

A lot of the resources in the Nintendo DS such as sprite palettes and sprite entries have a fixed
upper bound on the number that can exist at any one time. These limitations have already
been discussed in section 7.2.2, and this section presents a solution to efficiently manage these
resources in memory.

To use the limit of 32 affine matrices as an example, each matrix has a corresponding identifier
that ranges from 0 to 31. If no two matrices can have the same identifier at any one time, how
does one correctly choose an identifier that is not currently in use? A naïve solution would be
to perform a linear search on the whole list of available identifiers to find an unused one. On
a system such as the Nintendo DS, where every clock cycle counts, every possible optimisation
must be made to achieve a smooth framerate.

The method that has been used in the Pineapple Game Engine has constant time complexity
for both finding an available identifier, and for freeing an identifier when it is no longer in use.
The algorithm is presented in the form of an efficient data structure, named an “Index Buffer”.
This data structure is structurally similar to a circular buffer. The buffer is initially filled with
all available identifiers, so for the affine matrices, it is filled with values from 0 through to 31.
Two pointers are used to point to the start value and the end value of the buffer. When an
identifier is requested, if the buffer is not empty, the value at the start of the buffer is popped
out, and the start pointer is incremented by one. When an identifier is released back into the
buffer, the end pointer is incremented by one, and the value of the identifier is saved to that
location. Provided the integrity of the identifiers is not compromised during transit, then this
makes for an extremely efficient solution.

This data structure is not called an identifier buffer because that would imply that its usage is
limited to resources that have a fixed number of identifiers. The index buffer can also be used
to refer to locations in memory, by using a memory offset with a memory multiplier, one can
easily manage a set number of pages in a contiguous block of memory.

The index buffer structure is used to manage:

• Sprite Engine

– Entries in the OAM

– Palettes

– Ext Palettes

– Affine Matrices

• Map Engine

– Tile Memory

51

7.2.4 Sprite Engine

This section will detail the implementation of the sprite engine in the Nintendo DS version of
the Pineapple Game Engine.

7.2.4.1 Assigning Graphics Cores

To ensure that the Nintendo DS version behaves in the same was as the Windows and Linux
versions, not only must the resources of the DS must be used wisely, but a system for correctly
managing both of the screens must be defined.

The top screen of the Nintendo DS is the one which is usually used for the projection of the
main game, whilst the bottom screen is often used for displaying components that are secondary
to the game such as a heads up display or an in game map. For this reason, the Nintendo DS’s
most powerful graphics core, the main core, was assigned to the top screen, while the sub core
was mapped to the bottom screen.

7.2.4.2 Texture Loading

The two graphics cores of the Nintendo DS accept data in two different ways. The main core
uses bitmap graphics for rendering textures in three-dimensional space, whilst the sub core takes
in tiled graphics to draw sprites in a series of blocks. The actual per pixel data is the same,
the only difference is that the order in which the pixels are arranged in memory. For bitmap
data the pixels are ordered in horizontal rows starting with the top left corner of the image, and
finishing at the bottom right corner. Tiled data is stored as a series of contiguous bitmaps 8
pixels by 8 pixels in size, and these “tiles” are arranged in memory row by row starting from the
top left tile and finishing with the bottom right tile.

The screen that the sprite is created on will determine the type of formatting that is required
by the sprite graphic. It is impractical to store both formats of every texture in the executable
as the main RAM of the Nintendo DS is extremely limited. This led to the idea of embedding
a single format in the executable, and generating the other format at runtime when required.
Since the main graphics core is estimated to be used the most, the texture data of every sprite is
compiled into the executable in bitmap format, and when the texture is needed on the bottom
screen, the tiled data is algorithmically calculated from the bitmap data.

As well as having two separate texture formats, there is another texture attribute that cannot
be ignored. For both bitmap and tiled graphics data, two different bit-depths exist, measured in
bits per pixel (BPP). These bit-depths are 4BPP (16 colours) and 8BPP (256 colours). Graphics
data in 8BPP format takes up twice the space in memory as graphics data in 4BPP format. A
significantly higher quality can be seen from 8BPP sprites compared to 4BPP sprites, so it is
important to choose the correct format for each sprite. This choice of bit-depth is left to the
developer at the application level, when creating an NdsTexture resource.

52

7.2.4.3 Main Screen Sprite

The Nintendo DS’s main graphics core is a similar state machine to the model OpenGL uses,
making the blitting of 2D sprites somewhat of a simple task. Sprites are drawn to the screen
using 3D primitives to render 2D images in a similiar fashion to that of the Windows and Linux
platforms. Rendering sprites to the main screen was not exactly a technical challenge but is
mentioned for the completeness of this section.

7.2.4.4 Sub Screen Sprite

Sprites on the bottom screen are read from the OAM once per frame, it is vital that the OAM
is kept up to date with the correct information. Each frame, each sprite in the Pineapple Game
Engine is processed and checked. Using the index buffer, OAM entries and affine matrices can
be distributed correctly to every sprite that requires them. All that was needed was to decide
if each sprite needed them. For the OAM entry (to actually display it on the screen), a simple
boundary check is executed each frame to determine if the sprite is in the current viewport. For
the affine matrices, if the scale or rotation properties were not the default, then an matrix would
be acquired. The default values being (1, 1) for the scale factor and zero for the rotation.

7.2.4.5 Dual Screen Sprite

Main screen and sub screen sprites work well, but what if the developer wanted to have a sprite
that could be thrown from screen to screen? It was this thought that provoked a dual screen
sprite type. Dual screen sprites are simply made up of a main screen sprite and a sub screen
sprite. The dual screen sprite manages the attributes of both sprites to provide, what appears
to be, a single sprite seamlessly travelling from screen to screen.

53

Figure 7.3: Abstract sprite creation on the Nintendo DS

7.2.5 Map Engine

This section will detail the implementation of the map engine in the Nintendo DS version of the
Pineapple Game Engine.

7.2.5.1 Hardware Backgrounds

Each graphics core features four hardware backgrounds that are controlled in the same way on
each core. When the main core is in a 3D mode, then it must use its first background as a 3D
framebuffer. The background control engine in the Nintendo DS is structurally similar to that of
the Pineapple Game Engine’s map engine, its just a lot smaller. It consists of tiled1 background
graphics formatted in either 4BPP or 8BPP, and hardware maps consisting of tile entries that
dictate where tile graphics are to be placed on the screen.

7.2.5.2 Tile Entries

Each tile entry is 16 bits in size, has a tile index, and horizontal and vertical flipping flags, just
like the tile entries in the Pineapple Game Engine. The only difference is that in the Nintendo

1This is the same 8 pixel by 8 pixel tiled graphics that is used by sprites.

54

DS 4 bits are used for selecting a colour palette, which are only used in the 4BPP format. In the
8BPP format these bits are unused, since in the 8BPP format only one colour palette is used
per background. The 8BPP format will be used in the map engine to achieve the best image
quality, as the 4BPP format is inadequate for backgrounds with many colours.

To compare the format of the Nintendo DS tile and the Pineapple Game Engine tile:

16 bits
Tile Entry 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Nintendo DS Palette VF HF Tile Index (0 - 1023)
Pineapple Game Engine HF VF Tile Index (0 - 16383)

7.2.5.3 Tile Bases and Map Bases

In the Pineapple Game Engine, the main graphics core uses VRAM bank B for background
memory, and VRAM bank G for its colour palette, while the sub graphics core uses VRAM banks
C and H. Both cores behave in exactly the same way with respect to background rendering.

Background memory is divided up into overlapping sections of tile and map memory, which is
only referencable through tile bases and map bases respectively. Each 2kB map base has 32 by
32 tile entries, and each 16kB tile base can hold up to 256 tiles in a 8BPP format. The map
bases can only range from 0 to 31, which means only the first 64kB of the background memory
can be used for map data, but tile bases span the whole 128kB.

Memory Offset (kB) Map Base (0 - 31) Tile Base (0 - 7)
0 0 0
2 1
4 2
6 3
8 4
10 5
12 6
14 7
16 8 1
18 9
...

Figure 7.4: VRAM Bank B (128kB) in Background Memory mode.

Correctly placing tile graphics and map data alongside each other is absolutely critical. To
decide how much memory to allocate for each, a few calculations were carried out.

Firstly, the total amount of tile memory that will be needed was calculated. If each 8BPP tile
takes up 64B, and each background in a game can have up to 214 (16384) unique tiles, and each
screen must be able to have up to two backgrounds at any one time, then the maximum amount

55

of tile memory that would use is 2MB per screen2. Secondly, the total amount of map memory
necessary cannot be actually calculated, since background maps are allowed to be infinitely big
in the Pineapple Game Engine.

So to adhere to the requirements of this project then that 2MB of tile data and an indefinite
amount of map data must be streamed in real-time into the Nintendo DS’s memory bank of
128kB at a playable frame-rate, for each screen.

7.2.5.4 Squeezing Memory

Is it really possible to stream so much data into the Nintendo DS, and still have it running
smoothly?

As mentioned earlier, the screen of the Nintendo DS is 256 pixels by 192 pixels in size, which is
equivelant to 32 tiles by 24 tiles. However, if partially visible tiles are being counted, a maximum
of 33 by 25 tiles can be seen at any one time. To display a full screen of unique tiles will require
825 tiles to be loaded into memory at once for each background.

The chosen map base(s) and tile base(s) must have sufficient storage space to be able to display a
single region of game’s foreground and background at any one time. As the background is moved
relative to the game’s viewport, the correct tile graphics and map data must be dynamically
loaded in to properly render it.

Two map bases are needed for each background since each map base is 32 by 32 tiles, which is
only 1 tile too small on the horizontal to display 33 by 25 tiles. With 256 tiles per tile base, 3.22
tile bases3 are required out of the 8 that are available. The overlapping memory model in figure
7.4 can be taken advantage of. As previously mentioned, the map bases span the same region
of memory as the first four tile bases, and so 3.22 tile bases can fit into 27 map bases. Placing
the first background at tile base 0 leaves map bases 27 to 31 available for map data, of which
we only need two map bases per background, which means we need four of these. The second
background can be placed at tile base 4 with no worries. That leaves one map base to spare, and
some more tile graphics memory at the end of tile base 7, since the second background won’t use
all of the remaining four tile bases. This was used for a debug console for the entire application
which only needed one map base, and 4kB of tile graphics memory for the 128 ASCII characters.

22 backgrounds * 64 bytes * 214 tiles.
3825 tiles divided by 256 tiles per tile base to three significant figures.

56

Memory Offset (kB) Map Base Tile Base Used For
0 0 0 Foreground Tile Graphics (54kB)
2 1
...
52 26
54 27 Foreground Map (4kB)
56 28
58 29 Background Map (4kB)
60 30
62 31 Debug Console Map (2kB)
64 - 4 Background Tile Graphics (54kB)
66 -
...

110 -
112 - 7
114 -
116 -
118 - Debug Console Tile Graphics (2kB)
120 -
122 - Unused (6kB)
124 -
126 -

Figure 7.5: The resulting map and tile base allocation for storing a foreground, background and
a debug console.

7.2.5.5 The Algorithm

The algorithm works by removing tiles that are no longer in the current viewport, but were in
the previous one, and removing them. It then looks at the tiles that are in the current viewport,
but were not in the previous one, and placing them into map memory, loading the corresponding
tile graphics into tile memory if necessary. It stores the tiles that are currently loaded in a cache,
which is implemented as a hash map. It runs with a time complexity of O(nlogm) where n is
the number of tiles that need to be swapped out, and m is the number of tiles currently in the
cache. A visualisation of the algorithm running is shown in appendix E.

57

Algorithm 1 updateBackground(P, V)
Require:

P = set of all tile positions in previous view
V = set of all tile positions in current view

for all p⃗ ∈ (P \ V) do
β ← hardwareT iles[p⃗]
count[β]← count[β]− 1
if count[β] = 0 then
α← memory[β]
cache.erase(α)
indexBuffer.release(β)

end if
end for
for all p⃗ ∈ (V \ P) do
α← applicationT iles[p⃗]
if cache.find(α) then
β ← cache.get(α)

else
β ← indexBuffer.acquire()
cache.insert(α, β)
hardwareT ileMem[β]← applicationT ileMem[α]
memory[β]← α

end if
count[β]← count[β] + 1
hardwareT iles[p⃗]← β

end for

58

Chapter 8

Conclusion

This section concludes the work carried out during the project.

8.1 Demonstration

A large scale game was developed to demonstrate that the functionality included in the Pineapple
Game Engine was suitable for creating games, screenshots of which can be viewed in appendix
F. The game consisted of two unique levels, that were formulated to test two individual genres
of 2D games, an overhead shooter, and a platformer.

The game starts with a cutscene, where a lone spaceship is ambushed by a group of alien
spaceships, consequently forcing the player to intervene and command the spaceship to eradicate
the enemy ships. After a couple of waves of enemy ships have been defeated, the player is
introduced to the queen ship, which is a carefully scripted boss battle. Once the player thinks
that the boss ship has been defeated, the boss fires out one last laser beam which causes the
players ship to hurtle towards the earth and subsequently crash land.

Once the player has crash landed, the scene is changed to that of a platformer, where the player,
who is shown to be a fighter droid robot, has survived the crash and now has the opportunity
to explore the vast landscapes in this section. The robot faces multiple semi-intelligent dragon
enemies before facing the dragon boss, which is also another carefully scripting boss battle.

Throughout the game, the following game specific concepts are demonstrated:

• Animations

• Behaviour

• Artificial Intelligence

• States

59

• Interactions

• Attributes

• Inheritance

The game was designed, developed and tested in an extremely short time (less than two weeks),
and was fully featured with animated graphics and sound effects. The game was first written
with the desktop platforms in mind, and when it was ported to the Nintendo DS, it had to be
scaled down to fit the smaller screens. This involved scaling the textures down to half the size,
and altering other specific attributes that were related to the size of the viewport of the game,
such as the dragons visual perception distance. The quality of some of the sound resources also
had to be lowered in order for the executable to fit in the 4MB of main RAM that is offered by
the Nintendo DS. These kind of modifications are inevitible when porting a game from a more
capable platform to a less capable one. However, it would be beneficial if there was some way
that the whole game could be automatically scaled appropriately to adhere to the requirements
of the platform it is compiled for.

There was one feature that wasn’t present in the Pineapple Game Engine that was needed in
the platformer level. That was collision masks for large world scenes. This feature had to be
programmed in by myself during development, however by doing so shows that the game engine
is easily extendible.

8.2 Discussion

A working solution to the problem has been developed and demonstrated, showing that it was
possible to achieve the goals and objectives set out in the in the requirements. I have shown
that it is possible with careful design and efficient implementation, and I have also made the
system completely extensible and compliant for third party developers.

However, the sheer size of this project meant that there was not enough time to completely
optimise the solution. Even though the solution as it stands is optimised to a certain degree,
there have been a few well known optimisation techniques that have been overlooked. A notable
one to mention is the pooling1 of objects to reduce the number of allocations and deallocations
per second.

Since this game engine is minimal, fast and platform independent it is most suitable for the
design stage of multi-platform software projects, where ideas can be turned into something
concrete on the screen and prototyped in a matter of hours. However, with commercial plug-ins,
this game engine can be deployed and used in many mainstream projects. It can also be used as
a tool for porting video games from one platform to another, in similar way to SDL and Allegro.

1Creating a fixed amount of objects during start up, then reusing these throughout the execution of the
program.

60

8.3 Relevance to Computer Science

The main goal of this project was to find a more efficient method to current scripting language
based systems. Using modern high level programming features as well as designing efficient data
structures and algorithms was key to finding the solution. This project has introduced new
system design techniques and modern programming paradigms that have the potential to be
used to create more dynamic software solutions.

8.4 Summary of Contributions

This dissertation introduces the idea of using modern concepts in C++ programming to develop
event driven games in a completely platform agnostic environment. The Pineapple Object Inter-
action Framework itself can be used as a cross-platform base for many applications outside the
field of video games, including simulations and graphical applications. The automatic processing
of object specific functionality using implicit template instantiation as described in section 7.1.1
is also noteworthy.

This is also the first project, to my personal knowledge, that has fully bridged the gap between
the Nintendo DS platform, and desktop environments, allowing an abstract game to be defined,
and ported between platforms without any problems. In fact, the only issue with porting from
PC to Nintendo DS is that the hardware limitations on the Nintendo DS need to be taken into
consideration, such as the graphics memory available, although this project has shown that it is
possible to squeeze large bitmap images into the Nintendo DS in section 7.2.5.

8.5 Further Work

Implementations for a wide range of platforms could be built, and since this project is written
in C++, there are a large number of platforms that could be supported, including PlayStation
3, Android, and iPhone. There is also room for an integrated development environment to be
created around the game engine to make the process of setting up projects, compilation, and
managing resources easier.

To add further functionality to the game engine, additional plug-ins could be developed that
cover more game specific concepts. These plug-ins could add more types of events to the system,
and provide the developer with a wider set of objects to utilise. Such plug-ins include:

• Artificial Intelligence

• Navigation

• Internet Multi-player

61

• Text Rendering

• 3D Graphics

• More Sophisticated Physics

• Threads

Concerning the platform specific stages of games in the Pineapple Game Engine, manually
loading in the correct resources during startup is somewhat of a chore, and could be replaced
by auto-generating such a file. A way to auto-scale a game to fit the current platform is also a
good idea for this project, as it would relieve the developer from having to pursue in such tasks
manually.

62

Bibliography

[1] Oracle. 2010. url: http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/
Object.html (Retrieved on 18/04/2012).

[2] A GNU Manual. Free Software Foundation Inc. 2010.

[3] Jaeden Amero. Introduction to Nintendo DS Programming. 2008. url: http://static.
patater.com/files/projects/manual/manual.html (Retrieved on 19/04/2012).

[4] OpenGL Architecture Review Board et al. OpenGL(R) Programming Guide: The Official
Guide to Learning OpenGL(R), Version 2.1. 6th. Addison-Wesley Professional, 2007. isbn:
0321481003, 9780321481009.

[5] Compare GameMaker versions. YoYo Games. 2012. url: http://www.yoyogames.com/
make (Retrieved on 23/04/2012).

[6] Thomas H. Cormen et al. Introduction to Algorithms. 3rd ed. The MIT Press, 2009. isbn:
978-0-262-03384-8.

[7] Michael Dawson. Beginning C++ Game Programming. Ed. by Mitzi Koontz. Premier
Press, 2004, p. xi.

[8] FMOD Licenses. Firelight Technologies. 2012. url: http://www.fmod.org/index.php/
sales (Retrieved on 21/04/2012).

[9] Brent Fulgham. Computer Language Benchmarks Game. 2004. url: http://shootout.
alioth.debian.org/ (Retrieved on 08/04/2012).

[10] Philip Gamble. GameMaker 8.1 Decompiler Released. Game Maker Blog. 2011. url: http:
//gamemakerblog.com/2011/06/14/gamemaker-8-1-decompiler-released/ (Retrieved
on 10/04/2012).

[11] Jacob Habgood and Mark Overmars. The Game Makers Apprentice: Game Development
For Beginners. Ed. by Chris Mills. Pearson, 2006.

[12] Jonathan S. Harbour. Game Programming All In One. Ed. by Jenny Davidson. Second.
Thomson Course Technology, 2007.

[13] History of Game Maker, 1999. YoYo Games. url: http://wiki.yoyogames.com/index.
php/Game_Maker_History#1999 (Retrieved on 10/04/2012).

63

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Object.html
http://static.patater.com/files/projects/manual/manual.html
http://static.patater.com/files/projects/manual/manual.html
http://www.yoyogames.com/make
http://www.yoyogames.com/make
http://www.fmod.org/index.php/sales
http://www.fmod.org/index.php/sales
http://shootout.alioth.debian.org/
http://shootout.alioth.debian.org/
http://gamemakerblog.com/2011/06/14/gamemaker-8-1-decompiler-released/
http://gamemakerblog.com/2011/06/14/gamemaker-8-1-decompiler-released/
http://wiki.yoyogames.com/index.php/Game_Maker_History#1999
http://wiki.yoyogames.com/index.php/Game_Maker_History#1999

[14] History of Game Maker, 2007. YoYo Games. url: http://wiki.yoyogames.com/index.
php/Game_Maker_History#2007 (Retrieved on 10/04/2012).

[15] ISFE. Video Gamers in Europe. 2010.

[16] Jeff Wilson Jason Busby Zak Parrish. “Introduction to Unreal Technology”. In: InformIT
(2009).

[17] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison Wesley, 2006. isbn: 0-321-
29535-8.

[18] Martin Korth. GBATEK - Gameboy Advance / Nintendo DS - Technical Info. Tech. rep.
2007.

[19] Sam Lantinga. SDL version 1.2.15 (stable). 2012. url: http : / / www . libsdl . org /

download-1.2.php (Retrieved on 24/04/2012).

[20] Legal Information (Copyrights, Emulators, ROMs, etc.) Nintendo. 2012. url: http://
www.nintendo.com/corp/legal.jsp (Retrieved on 09/04/2012).

[21] Robert C. Martin. “Java and C++: A critical comparison”. Mar. 1997.

[22] Nintendo DS Frequently Asked Questions. Nintendo. url: http://www.nintendo.com/
consumer/systems/ds/faq.jsp#ds (Retrieved on 12/04/2012).

[23] Mark H. Overmars. GAME DESIGN IN EDUCATION. Tech. rep. 2004.

[24] Mark H. Overmars. “Teaching Computer Science through Game Design”. In: Computer 37
(2004), pp. 81–83.

[25] Mark Overmars. Designing Games with Game Maker. 7.0. YoYo Games.

[26] Theo Pavlidis. “Computer Game Basics (Draft)”. 2006.

[27] Simple Directmedia Layer Official Website. url: http://www.libsdl.org/ (Retrieved on
23/04/2012).

[28] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley, 2011.

[29] Tim Sweeney. Unreal Language Reference. Epic Games. 1998.

[30] The difference between instance ids and indexes. YoYo Games. 2011. url: http://wiki.
yoyogames.com/index.php/The_difference_between_instance_ids_and_indexes

(Retrieved on 23/04/2012).

[31] The Unreal Editor. Epic Games. 2012. url: http://www.unrealengine.com/features/
editor/ (Retrieved on 23/04/2012).

[32] Unreal Engine: Platforms. Epic Games. 2012. url: http://www.unrealengine.com/

platforms (Retrieved on 23/04/2012).

64

http://wiki.yoyogames.com/index.php/Game_Maker_History#2007
http://wiki.yoyogames.com/index.php/Game_Maker_History#2007
http://www.libsdl.org/download-1.2.php
http://www.libsdl.org/download-1.2.php
http://www.nintendo.com/corp/legal.jsp
http://www.nintendo.com/corp/legal.jsp
http://www.nintendo.com/consumer/systems/ds/faq.jsp#ds
http://www.nintendo.com/consumer/systems/ds/faq.jsp#ds
http://www.libsdl.org/
http://wiki.yoyogames.com/index.php/The_difference_between_instance_ids_and_indexes
http://wiki.yoyogames.com/index.php/The_difference_between_instance_ids_and_indexes
http://www.unrealengine.com/features/editor/
http://www.unrealengine.com/features/editor/
http://www.unrealengine.com/platforms
http://www.unrealengine.com/platforms

Appendix A

UML Diagram

Figure A.1: A UML digram of the Pineapple Object Interaction Framework

65

Appendix B

External Module Design

Composition

class Object {
Module1 module1 ;
[Module2 module2 ; . . .]
Object () {

module1 . eventHook<Object>(&eventFromModule1) ;
[module2 . eventHook<Object>(&eventFromModule2) ; . . .]

}
void f unc t i on () {

module1 . aFunction () ;
[module2 . aFunction () ; . . .]

}
void eventFromModule1 () {

// ac t i on s
}
. . .

} ;

Inheritance

class Object : public Module1 [, public Module2 . . .] {
void f unc t i on () {

aFunctionFromModule1 () ;
[aFunctionFromModule2 () ; . . .]

}
void eventFromModule1 () {

// ac t i on s
}
. . .

} ;

66

Appendix C

AABB Collision Algorithm

Algorithm 2 overlapping(A, B, V)
Require:

A = first AABB
B = second AABB
V = a vector to will store the response

left← B.x2−A.x1
right← A.x2−B.x1
bottom← B.y2−A.y1
top← A.y2−B.y1
if left > 0 ∧ right > 0 ∧ bottom > 0 ∧ top > 0 then
shortest← left
response← (−left, 0)
if right < shortest then
shortest← right
V ← (right, 0)

end if
if bottom < shortest then
shortest← bottom
V ← (0,−bottom)

end if
if top < shortest then
V ← (0, top)

end if
return true

else
return false

end if

67

Appendix D

Nintendo DS Video Modes

The various modes of operation each graphics core of the Nintendo DS can be set into.

Main Core

Mode BG0 BG1 BG2 BG3
Mode 0 Text/3D Text Text Text
Mode 1 Text/3D Text Text Rotation
Mode 2 Text/3D Text Rotation Rotation
Mode 3 Text/3D Text Text Extended
Mode 4 Text/3D Text Rotation Extended
Mode 5 Text/3D Text Extended Extended
Mode 6 3D - Large Bitmap -

Frame Buffer Direct VRAM Bitmap Display

Sub Core

Mode BG0 BG1 BG2 BG3
Mode 0 Text Text Text Text
Mode 1 Text Text Text Rotation
Mode 2 Text Text Rotation Rotation
Mode 3 Text Text Text Extended
Mode 4 Text Text Rotation Extended
Mode 5 Text Text Extended Extended

Background Type Scale Rotate

Text No No
Rotation No Yes
Extended Yes Yes

68

Appendix E

Nintendo DS Map Engine

A visualisation of the algorithm that is used to drive the map engine for the Nintendo DS version
of the Pineapple Game Engine. From left to right, the Nintendo DS map memory (2 * 32 *
32 tiles), the tile memory (832 tiles), and the user’s screen (256 by 192 pixels). The red box
in map memory indicates where the Nintendo DS is currently rendering the screen background
data from.

69

Appendix F

Demonstration Screenshots

The same game running on Linux and Windows on the left, and on the Nintendo DS on the
right.

70

	Introduction
	Dissertation Outline
	Acknowledgements
	Motivation
	Aims and Goals
	Legal, Social, Ethical and Professional Issues

	Related Work
	Simple Directmedia Layer
	Allegro
	Discussion

	Analysis
	Scripting Languages in Game Engines
	Introduction
	List of Advantages
	List of Disadvantages

	Case Studies
	Case Study I: GameMaker
	Case Study II: Unreal Engine
	Conclusion

	Requirements

	Design
	Core Design Goals
	Engine Architecture
	Game Objects
	World
	Plug-Ins

	System Structure
	Start Phase
	Processing Phase
	End Phase

	Platform Agnosticism
	Platform Specific Phases
	Requirements

	Development
	Compiled Language Justification
	Target Platforms
	Considerations
	Microsoft Windows
	Linux
	Nintendo DS

	Implementation
	Pineapple Object Interaction Framework
	Plug-Ins

	Putting it all Together

	Project Management
	Software Development
	Software Development Model
	Software Engineering Principles
	Source Code Management

	Verification
	Requirements Analysis
	Verification of Design

	Validation
	Unit Testing
	Integration Testing
	Platform Testing
	System Testing

	Criticisms of Project Management

	Technical Challenges
	Pineapple Object Interaction Framework
	Automation: Exploiting Implicit Template Instantiation

	Nintendo DS
	Hardware Specification
	Graphics Capabilities
	Organising Video Memory
	Sprite Engine
	Map Engine

	Conclusion
	Demonstration
	Discussion
	Relevance to Computer Science
	Summary of Contributions
	Further Work

	Bibliography
	UML Diagram
	External Module Design
	AABB Collision Algorithm
	Nintendo DS Video Modes
	Nintendo DS Map Engine
	Demonstration Screenshots

